Markings such as “ASME,” “ASME Standard,” or any other marking including “ASME,” ASME logos, or the ASME Single Certification Mark shall not be used on any item that is not constructed in accordance with all of the applicable requirements of the Code or Standard. Use of the ASME Single Certification Mark requires formal ASME certification; if no certification program is available, such ASME markings may not be used. (For Certification and Accreditation Programs, see https://www.asme.org/certification-accreditation.)

Items produced by parties not formally possessing an ASME Certificate may not be described, either explicitly or implicitly, as ASME certified or approved in any code forms or other document.
VIII
RULES FOR CONSTRUCTION
OF PRESSURE VESSELS

Division 2

Alternative Rules

ASME Boiler and Pressure Vessel Committee
on Pressure Vessels
This international code or standard was developed under procedures accredited as meeting the criteria for American National Standards and it is an American National Standard. The standards committee that approved the code or standard was balanced to ensure that individuals from competent and concerned interests had an opportunity to participate. The proposed code or standard was made available for public review and comment, which provided an opportunity for additional public input from industry, academia, regulatory agencies, and the public-at-large.

ASME does not “approve,” “certify,” “rate,” or “endorse” any item, construction, proprietary device, or activity. ASME does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a standard against liability for infringement of any applicable letters patent, nor does ASME assume any such liability. Users of a code or standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Participation by federal agency representatives or persons affiliated with industry is not to be interpreted as government or industry endorsement of this code or standard.

ASME accepts responsibility for only those interpretations of this document issued in accordance with the established ASME procedures and policies, which precludes the issuance of interpretations by individuals.

The endnotes and preamble in this document (if any) are part of this American National Standard.
TABLE OF CONTENTS

List of Sections ... xxvii
Foreword ... xxviii
Statement of Policy on the Use of ASME Marking to Identify Manufactured Items xxx
Personnel ... liii
Correspondence With the Committee .. lvi
Summary of Changes ... lv
Cross-Referencing in the ASME BPVC .. lx

Part 1 General Requirements .. 1
1.1 General ... 1
1.1.1 Introduction ... 1
1.1.2 Organization ... 1
1.1.3 Definitions .. 1
1.2 Scope ... 1
1.2.1 Overview ... 1
1.2.2 Additional Requirements for Very High Pressure Vessels ... 2
1.2.3 Geometric Scope of This Division .. 2
1.2.4 Classifications Outside the Scope of this Division ... 3
1.2.5 Combination Units .. 3
1.2.6 Field Assembly of Vessels ... 3
1.2.7 Overpressure Protection .. 4
1.3 Standards Referenced by This Division 4
1.4 Units of Measurement .. 4
1.5 Tolerances .. 5
1.6 Technical Inquiries ... 5
1.7 Tables ... 5

Annex 1-B Definitions ... 7
1-B.1 Introduction ... 7
1-B.2 Definition of Terms ... 7

Annex 1-C Guidance for the Use of U.S. Customary and SI Units in the ASME Boiler and Pressure Vessel Codes ... 9
1-C.1 Use of Units in Equations ... 9
1-C.2 Guidelines Used to Develop SI Equivalents .. 9
1-C.3 Soft Conversion Factors .. 10
1-C.4 Tables ... 10

Part 2 Responsibilities and Duties 15
2.1 General ... 15
2.1.1 Introduction ... 15
2.1.2 Definitions ... 15
2.1.3 Code Reference ... 15
2.2 User Responsibilities .. 15
2.2.1 General .. 15
2.2.2 Multiple Identical Vessels .. 15
2.2.3 User’s Design Specification ... 15
2.3 Manufacturer’s Responsibilities ... 17
2.3.1 Code Compliance ... 17
2.3.2 Materials Selection ... 17
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.3</td>
<td>Manufacturer’s Design Report</td>
<td>18</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Manufacturer’s Data Report</td>
<td>19</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Manufacturer’s Construction Records</td>
<td>19</td>
</tr>
<tr>
<td>2.3.6</td>
<td>Quality Control System</td>
<td>19</td>
</tr>
<tr>
<td>2.3.7</td>
<td>Manufacturer’s Design Personnel</td>
<td>19</td>
</tr>
<tr>
<td>2.3.8</td>
<td>Certification of Subcontracted Services</td>
<td>19</td>
</tr>
<tr>
<td>2.3.9</td>
<td>Inspection and Examination</td>
<td>19</td>
</tr>
<tr>
<td>2.3.10</td>
<td>Application of Certification Mark</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>The Inspector</td>
<td>20</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Identification of Inspector</td>
<td>20</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Inspector Qualification</td>
<td>20</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Inspector’s Duties</td>
<td>20</td>
</tr>
<tr>
<td>2-A.1</td>
<td>General</td>
<td>21</td>
</tr>
<tr>
<td>2-A.2</td>
<td>Certification of the User’s Design Specification</td>
<td>21</td>
</tr>
<tr>
<td>2-A.3</td>
<td>Tables</td>
<td>22</td>
</tr>
<tr>
<td>Annex 2-B</td>
<td>Guide for Certifying a Manufacturer’s Design Report</td>
<td>23</td>
</tr>
<tr>
<td>2-B.1</td>
<td>General</td>
<td>23</td>
</tr>
<tr>
<td>2-B.2</td>
<td>Certification of Manufacturer’s Design Report by a Certifying Engineer</td>
<td>23</td>
</tr>
<tr>
<td>2-B.3</td>
<td>Certification of a Manufacturer’s Design Report by an Engineer or a Designer</td>
<td>23</td>
</tr>
<tr>
<td>2-B.4</td>
<td>Manufacturer’s Design Report Certification Form</td>
<td>24</td>
</tr>
<tr>
<td>2-B.5</td>
<td>Tables</td>
<td>24</td>
</tr>
<tr>
<td>Annex 2-C</td>
<td>Report Forms and Maintenance of Records</td>
<td>25</td>
</tr>
<tr>
<td>2-C.1</td>
<td>Manufacturer’s Data Reports</td>
<td>25</td>
</tr>
<tr>
<td>2-C.2</td>
<td>Manufacturer’s Partial Data Reports</td>
<td>26</td>
</tr>
<tr>
<td>2-C.3</td>
<td>Maintenance of Records</td>
<td>26</td>
</tr>
<tr>
<td>Annex 2-D</td>
<td>Guide for Preparing Manufacturer’s Data Reports</td>
<td>28</td>
</tr>
<tr>
<td>2-D.1</td>
<td>Introduction</td>
<td>28</td>
</tr>
<tr>
<td>2-D.2</td>
<td>Tables</td>
<td>28</td>
</tr>
<tr>
<td>Annex 2-E</td>
<td>Quality Control System</td>
<td>42</td>
</tr>
<tr>
<td>2-E.1</td>
<td>General</td>
<td>42</td>
</tr>
<tr>
<td>2-E.2</td>
<td>Outline of Features Included in the Quality Control System</td>
<td>42</td>
</tr>
<tr>
<td>2-E.3</td>
<td>Authority and Responsibility</td>
<td>42</td>
</tr>
<tr>
<td>2-E.4</td>
<td>Organization</td>
<td>43</td>
</tr>
<tr>
<td>2-E.5</td>
<td>Drawings, Design Calculations, and Specification Control</td>
<td>43</td>
</tr>
<tr>
<td>2-E.6</td>
<td>Material Control</td>
<td>43</td>
</tr>
<tr>
<td>2-E.7</td>
<td>Examination and Inspection Program</td>
<td>43</td>
</tr>
<tr>
<td>2-E.8</td>
<td>Correction of Nonconformities</td>
<td>43</td>
</tr>
<tr>
<td>2-E.9</td>
<td>Welding</td>
<td>43</td>
</tr>
<tr>
<td>2-E.10</td>
<td>Nondestructive Examination</td>
<td>43</td>
</tr>
<tr>
<td>2-E.11</td>
<td>Heat Treatment</td>
<td>43</td>
</tr>
<tr>
<td>2-E.12</td>
<td>Calibration of Measurement and Test Equipment</td>
<td>44</td>
</tr>
<tr>
<td>2-E.13</td>
<td>Records Retention</td>
<td>44</td>
</tr>
<tr>
<td>2-E.14</td>
<td>Sample Forms</td>
<td>44</td>
</tr>
<tr>
<td>2-E.15</td>
<td>Inspection of Vessels and Vessel Parts</td>
<td>44</td>
</tr>
<tr>
<td>2-E.16</td>
<td>Inspection of Pressure Relief Valves</td>
<td>44</td>
</tr>
<tr>
<td>Annex 2-F</td>
<td>Contents and Method of Stamping</td>
<td>45</td>
</tr>
<tr>
<td>2-F.1</td>
<td>Required Marking for Vessels</td>
<td>45</td>
</tr>
<tr>
<td>2-F.2</td>
<td>Required Marking for Combination Units</td>
<td>45</td>
</tr>
<tr>
<td>2-F.3</td>
<td>Application of Stamp</td>
<td>46</td>
</tr>
<tr>
<td>2-F.4</td>
<td>Part Marking</td>
<td>46</td>
</tr>
<tr>
<td>2-F.5</td>
<td>Application of Markings</td>
<td>46</td>
</tr>
<tr>
<td>2-F.6</td>
<td>Duplicate Nameplate</td>
<td>47</td>
</tr>
</tbody>
</table>
Part 3 Materials Requirements

3.1 General Requirements .. 55
3.2 Materials Permitted for Construction of Vessel Parts 55
 3.2.1 Materials for Pressure Parts 55
 3.2.2 Materials for Attachments to Pressure Parts 55
 3.2.3 Welding Materials .. 56
 3.2.4 Dissimilar Materials ... 56
 3.2.5 Product Specifications .. 56
 3.2.6 Certification ... 57
 3.2.7 Product Identification and Traceability 58
 3.2.8 Prefabricated or Preformed Pressure Parts Furnished Without a Code Stamp 59
 3.2.9 Definition of Product Form Thickness 61
 3.2.10 Product Form Tolerances 61
 3.2.11 Purchase Requirements ... 62
 3.2.12 Material Identified With or Produced to a Specification Not Permitted by This Division 62
3.3 Supplemental Requirements for Ferrous Materials 62
 3.3.1 General .. 62
 3.3.2 Chemistry Requirements ... 62
 3.3.3 Ultrasonic Examination of Plates 62
 3.3.4 Ultrasonic Examination of Forgings 62
 3.3.5 Magnetic Particle and Liquid Penetrant Examination of Forgings ... 63
 3.3.6 Integral and Weld Metal Overlay Clad Base Metal 63
 3.3.7 Clad Tubesheets .. 64
3.4 Supplemental Requirements for Cr–Mo Steels 64
 3.4.1 General .. 64
 3.4.2 Postweld Heat Treatment 64
 3.4.3 Test Specimen Heat Treatment 64
 3.4.4 Welding Procedure Qualifications and Welding Consumables Testing ... 65
 3.4.5 Toughness Requirements 65
3.5 Supplemental Requirements for Q&T Steels With Enhanced Tensile Properties ... 65
 3.5.1 General .. 65
 3.5.2 Parts for Which Q&T Steels May Be Used 66
 3.5.3 Structural Attachments .. 66
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6</td>
<td>Supplemental Requirements for Nonferrous Materials</td>
<td>66</td>
</tr>
<tr>
<td>3.6.1</td>
<td>General</td>
<td>66</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Ultrasonic Examination of Plates</td>
<td>66</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Ultrasonic Examination of Forgings</td>
<td>66</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Liquid Penetrant Examination of Forgings</td>
<td>67</td>
</tr>
<tr>
<td>3.6.5</td>
<td>Clad Plate and Products</td>
<td>67</td>
</tr>
<tr>
<td>3.6.6</td>
<td>Clad Tubeshells</td>
<td>67</td>
</tr>
<tr>
<td>3.7</td>
<td>Supplemental Requirements for Bolting</td>
<td>67</td>
</tr>
<tr>
<td>3.7.1</td>
<td>General</td>
<td>67</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Examination of Bolts, Studs, and Nuts</td>
<td>67</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Threading and Machining of Studs</td>
<td>68</td>
</tr>
<tr>
<td>3.7.4</td>
<td>Use of Washers</td>
<td>68</td>
</tr>
<tr>
<td>3.7.5</td>
<td>Ferrous Bolting</td>
<td>68</td>
</tr>
<tr>
<td>3.7.6</td>
<td>Nonferrous Bolting</td>
<td>69</td>
</tr>
<tr>
<td>3.7.7</td>
<td>Materials for Ferrous and Nonferrous Nuts of Special Design</td>
<td>69</td>
</tr>
<tr>
<td>3.8</td>
<td>Supplemental Requirements for Castings</td>
<td>70</td>
</tr>
<tr>
<td>3.8.1</td>
<td>General</td>
<td>70</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Requirements for Ferrous Castings</td>
<td>71</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Requirements for Nonferrous Castings</td>
<td>71</td>
</tr>
<tr>
<td>3.9</td>
<td>Supplemental Requirements for Hubs Machined From Plate</td>
<td>72</td>
</tr>
<tr>
<td>3.9.1</td>
<td>General</td>
<td>72</td>
</tr>
<tr>
<td>3.9.2</td>
<td>Material Requirements</td>
<td>72</td>
</tr>
<tr>
<td>3.9.3</td>
<td>Examination Requirements</td>
<td>72</td>
</tr>
<tr>
<td>3.9.4</td>
<td>Data Reports and Marking</td>
<td>72</td>
</tr>
<tr>
<td>3.10</td>
<td>Material Test Requirements</td>
<td>72</td>
</tr>
<tr>
<td>3.10.1</td>
<td>General</td>
<td>72</td>
</tr>
<tr>
<td>3.10.2</td>
<td>Requirements for Sample Test Coupons</td>
<td>72</td>
</tr>
<tr>
<td>3.10.3</td>
<td>Exemptions from Requirement of Sample Test Coupons</td>
<td>73</td>
</tr>
<tr>
<td>3.10.4</td>
<td>Procedure for Obtaining Test Specimens and Coupons</td>
<td>73</td>
</tr>
<tr>
<td>3.10.5</td>
<td>Procedure for Heat Treating Test Specimens from Ferrous Materials</td>
<td>74</td>
</tr>
<tr>
<td>3.10.6</td>
<td>Test Coupon Heat Treatment for Nonferrous Materials</td>
<td>75</td>
</tr>
<tr>
<td>3.11</td>
<td>Material Toughness Requirements</td>
<td>75</td>
</tr>
<tr>
<td>3.11.1</td>
<td>General</td>
<td>75</td>
</tr>
<tr>
<td>3.11.2</td>
<td>Carbon and Low Alloy Steels Except Bolting</td>
<td>75</td>
</tr>
<tr>
<td>3.11.3</td>
<td>Quenched and Tempered Steels</td>
<td>80</td>
</tr>
<tr>
<td>3.11.4</td>
<td>High Alloy Steels Except Bolting</td>
<td>80</td>
</tr>
<tr>
<td>3.11.5</td>
<td>Nonferrous Alloys</td>
<td>83</td>
</tr>
<tr>
<td>3.11.6</td>
<td>Bolting Materials</td>
<td>83</td>
</tr>
<tr>
<td>3.11.7</td>
<td>Toughness Testing Procedures</td>
<td>83</td>
</tr>
<tr>
<td>3.11.8</td>
<td>Impact Testing of Welding Procedures and Test Plates of Ferrous Materials</td>
<td>85</td>
</tr>
<tr>
<td>3.12</td>
<td>Allowable Design Stresses</td>
<td>87</td>
</tr>
<tr>
<td>3.13</td>
<td>Strength Parameters</td>
<td>87</td>
</tr>
<tr>
<td>3.14</td>
<td>Physical Properties</td>
<td>87</td>
</tr>
<tr>
<td>3.15</td>
<td>Design Fatigue Curves</td>
<td>87</td>
</tr>
<tr>
<td>3.16</td>
<td>Design Values for Temperatures Colder Than −30°C (−20°F)</td>
<td>88</td>
</tr>
<tr>
<td>3.17</td>
<td>Nomenclature</td>
<td>88</td>
</tr>
<tr>
<td>3.18</td>
<td>Definitions</td>
<td>88</td>
</tr>
<tr>
<td>3.19</td>
<td>Tables</td>
<td>89</td>
</tr>
<tr>
<td>3.20</td>
<td>Figures</td>
<td>98</td>
</tr>
<tr>
<td>Annex 3-A</td>
<td>Allowable Design Stresses</td>
<td>124</td>
</tr>
<tr>
<td>3-A.1</td>
<td>Allowable Stress Basis — All Materials Except Bolting</td>
<td>124</td>
</tr>
<tr>
<td>3-A.2</td>
<td>Allowable Stress Basis — Bolting Materials</td>
<td>125</td>
</tr>
<tr>
<td>3-A.3</td>
<td>Tables</td>
<td>125</td>
</tr>
<tr>
<td>Annex 3-B</td>
<td>Requirements for Material Procurement</td>
<td>147</td>
</tr>
</tbody>
</table>
4.13 Design Rules for Layered Vessels

4.13.1 Scope .. 382
4.13.2 Definitions .. 382
4.13.3 General .. 382

4.12 Design Rules for Ligaments

4.12.1 Scope .. 310
4.12.2 General Design Requirements 310
4.12.3 Requirements for Vessels With Reinforcement 311
4.12.4 Requirements for Vessels With Stays 311
4.12.5 Requirements for Rectangular Vessels With Small Aspect Ratios 312
4.12.6 Weld Joint Factors and Ligament Efficiency 312
4.12.7 Design Procedure 312
4.12.8 Design of Half-Pipe Jackets 312
4.12.9 Design of Jacketed Shells and Jacketed Heads 312
4.12.10 Design of Jacketed Heads 312
4.12.11 Nomenclature .. 312
4.12.12 Tables ... 312

4.11 Design Rules for Quick-Actuating (Quick-Opening) Closures

4.11.1 Scope .. 310
4.11.2 Required Thickness of Braced and Stayed Surfaces 312
4.11.3 Required Dimensions and Layout of Staybolts and Stays 312
4.11.4 Requirements for Welded-in Staybolts and Welded Stays 312
4.11.5 Nomenclature .. 312
4.11.6 Design of Jacketed Shells and Jacketed Heads 312
4.11.7 Nomenclature .. 312
4.11.8 Figures ... 312

4.10 Design Rules for Ligaments

4.10.1 Scope .. 315
4.10.2 Ligament Efficiency 315
4.10.3 Ligament Efficiency and the Weld Joint Factor 316
4.10.4 Nomenclature .. 316
4.10.5 Figures ... 316

4.9 Design Rules for Braced and Stayed Surfaces

4.9.1 Scope .. 312
4.9.2 Required Thickness of Braced and Stayed Surfaces 312
4.9.3 Required Dimensions and Layout of Staybolts and Stays 312
4.9.4 Requirements for Welded-in Staybolts and Welded Stays 312
4.9.5 Nomenclature .. 312
4.9.6 Tables ... 313
4.9.7 Figures ... 314

4.8 Design Rules for Quick-Actuating (Quick-Opening) Closures

4.8.1 Scope .. 310
4.8.2 Definitions .. 310
4.8.3 General Design Requirements 311
4.8.4 Specific Design Requirements 311
4.8.5 Alternative Designs for Manually Operated Closures 311
4.8.6 Supplementary Requirements for Quick-Actuating (Quick-Opening) Closures 311

4.7 Type C Head Thickness Requirements

4.7.1 Scope .. 303
4.7.2 Type C Head Thickness Requirements 304
4.7.3 Type B Head Thickness Requirements 302
4.7.4 Type D Head Thickness Requirements 306
4.7.5 Type B Head Thickness Requirements 304
4.7.6 Type D Head Thickness Requirements 306
4.7.7 Type C Head Thickness Requirements 303
4.7.8 Type D Head Thickness Requirements 306
4.7.9 Type B Head Thickness Requirements 302
4.7.10 Type C Head Thickness Requirements 303
4.7.11 Type D Head Thickness Requirements 306
4.7.12 Type B Head Thickness Requirements 302
4.7.13 Type C Head Thickness Requirements 303
4.7.14 Type D Head Thickness Requirements 306

4.6 Type B Head Thickness Requirements

4.6.1 Scope .. 303
4.6.2 Type B Head Thickness Requirements 302
4.6.3 Type B Head Thickness Requirements 302
4.6.4 Type B Head Thickness Requirements 302
4.6.5 Type B Head Thickness Requirements 302
4.6.6 Type B Head Thickness Requirements 302
4.6.7 Type B Head Thickness Requirements 302
4.6.8 Type B Head Thickness Requirements 302
4.6.9 Type B Head Thickness Requirements 302
4.6.10 Type B Head Thickness Requirements 302

4.5 Type D Head Thickness Requirements

4.5.1 Scope .. 304
4.5.2 Type D Head Thickness Requirements 306
4.5.3 Type D Head Thickness Requirements 306
4.5.4 Type D Head Thickness Requirements 306
4.5.5 Type D Head Thickness Requirements 306
4.5.6 Type D Head Thickness Requirements 306
4.5.7 Type D Head Thickness Requirements 306
4.5.8 Type D Head Thickness Requirements 306
4.5.9 Type D Head Thickness Requirements 306
4.5.10 Type D Head Thickness Requirements 306

4.4 Type C Head Thickness Requirements

4.4.1 Scope .. 310
4.4.2 Type C Head Thickness Requirements 311
4.4.3 Type C Head Thickness Requirements 311
4.4.4 Type C Head Thickness Requirements 311
4.4.5 Type C Head Thickness Requirements 311
4.4.6 Type C Head Thickness Requirements 311
4.4.7 Type C Head Thickness Requirements 311
4.4.8 Type C Head Thickness Requirements 311
4.4.9 Type C Head Thickness Requirements 311
4.4.10 Type C Head Thickness Requirements 311

4.3 Type D Head Thickness Requirements

4.3.1 Scope .. 311
4.3.2 Type D Head Thickness Requirements 311
4.3.3 Type D Head Thickness Requirements 311
4.3.4 Type D Head Thickness Requirements 311
4.3.5 Type D Head Thickness Requirements 311
4.3.6 Type D Head Thickness Requirements 311
4.3.7 Type D Head Thickness Requirements 311
4.3.8 Type D Head Thickness Requirements 311
4.3.9 Type D Head Thickness Requirements 311
4.3.10 Type D Head Thickness Requirements 311

4.2 Type B Head Thickness Requirements

4.2.1 Scope .. 311
4.2.2 Type B Head Thickness Requirements 311
4.2.3 Type B Head Thickness Requirements 311
4.2.4 Type B Head Thickness Requirements 311
4.2.5 Type B Head Thickness Requirements 311
4.2.6 Type B Head Thickness Requirements 311
4.2.7 Type B Head Thickness Requirements 311
4.2.8 Type B Head Thickness Requirements 311
4.2.9 Type B Head Thickness Requirements 311
4.2.10 Type B Head Thickness Requirements 311

4.1 Type C Head Thickness Requirements

4.1.1 Scope .. 311
4.1.2 Type C Head Thickness Requirements 311
4.1.3 Type C Head Thickness Requirements 311
4.1.4 Type C Head Thickness Requirements 311
4.1.5 Type C Head Thickness Requirements 311
4.1.6 Type C Head Thickness Requirements 311
4.1.7 Type C Head Thickness Requirements 311
4.1.8 Type C Head Thickness Requirements 311
4.1.9 Type C Head Thickness Requirements 311
4.1.10 Type C Head Thickness Requirements 311
4.18.7 Rules for the Design of U-Tube Tubesheets .. 458
4.18.8 Rules for the Design of Fixed Tubesheets ... 463
4.18.9 Rules for the Design of Floating Tubesheets ... 476
4.18.11 Bellows Expansion Joints ... 486
4.18.12 Flexible Shell Element Expansion Joints ... 486
4.18.13 Pressure Test Requirements .. 487
4.18.14 Heat Exchanger Marking and Reports ... 487
4.18.15 Nomenclature ... 488
4.18.16 Tables .. 493
4.18.17 Figures ... 498
4.19 Design Rules for Bellows Expansion Joints ... 512
 4.19.1 Scope .. 512
 4.19.2 Conditions of Applicability .. 512
 4.19.3 Design Considerations .. 514
 4.19.4 Materials .. 516
 4.19.5 Design of U-Shaped Unreinforced Bellows .. 516
 4.19.6 Design of U-Shaped Reinforced Bellows ... 519
 4.19.7 Design of Toroidal Bellows .. 519
 4.19.8 Bellows Subjected to Axial, Lateral, or Angular Displacements 520
 4.19.9 Pressure Test Design Requirements ... 523
 4.19.10 Marking and Reports .. 523
 4.19.11 Nomenclature .. 523
 4.19.12 Tables .. 525
 4.19.13 Figures ... 535
 4.19.14 Specification Sheets .. 546
4.20 Design Rules for Flexible Shell Element Expansion Joints 548
 4.20.1 Scope .. 548
 4.20.2 Conditions of Applicability .. 548
 4.20.3 Design Considerations .. 548
 4.20.4 Materials .. 548
 4.20.5 Design .. 548
 4.20.6 Marking and Reports .. 549
 4.20.7 Nomenclature .. 549
 4.20.8 Figures ... 550
4.21 Tube-to-Tubesheet Joint Strength .. 551
 4.21.1 Scope .. 551
 4.21.2 Joint Strength by Calculation .. 553
 4.21.3 Joint Strength Factors ... 555
 4.21.4 Nomenclature .. 557
 4.21.5 Tables .. 559
 4.21.6 Figures ... 560

Annex 4-A ... 563

Annex 4-B Guide for the Design and Operation of Quick-Actuating (Quick-Opening) Closures ... 564
 4-B.1 Introduction .. 564
 4-B.2 Responsibilities .. 564
 4-B.3 Design ... 564
 4-B.4 Installation .. 565
 4-B.5 Inspection .. 565
 4-B.6 Training .. 566
 4-B.7 Administrative Controls .. 566

Annex 4-D Guidance to Accommodate Loadings Produced by Deflagration 567
 4-D.1 Scope .. 567
 4-D.2 General .. 567
 4-D.3 Design Limitations .. 567
 4-D.4 Design Criteria .. 567
Part 7 Inspection and Examination Requirements .. 759
7.1 General ... 759
7.2 Responsibilities and Duties ... 759
7.2.1 Responsibilities and Duties of the Manufacturer and Inspector 759
7.2.2 Access for Inspector .. 759
7.2.3 Notification of Work Progress ... 759
7.3 Qualification of Nondestructive Examination Personnel 759
7.4 Examination of Welded Joints ... 759
7.4.1 Nondestructive Examination Requirements .. 759
7.4.2 Examination Groups for Pressure Vessels .. 759
7.4.3 Extent of Nondestructive Examination ... 760
7.4.4 Selection of Examination Method for Internal (Volumetric) Flaws 760
7.4.5 Selection of Examination Method for Surface Flaws 760
7.4.6 Surface Condition and Preparation .. 761
7.4.7 Supplemental Examination for Cyclic Service ... 761
7.4.8 Examination and Inspection of Vessels With Protective Linings and Cladding ... 761
7.4.9 Examination and Inspection of Tensile Property Enhanced Q&T Vessels 762
7.4.10 Examination and Inspection of Integrally Forged Vessels 762
7.4.11 Examination and Inspection of Fabricated Layered Vessels 763
7.4.12 Examination and Inspection of Expansion Joints 765
7.5 Examination Method and Acceptance Criteria .. 765
7.5.1 General ... 765
7.5.2 Visual Examination ... 765
7.5.3 Radiographic Examination ... 766
7.5.4 Ultrasonic Examination .. 767
7.5.5 Ultrasonic Examination Used in Lieu of Radiographic Examination 768
7.5.6 Magnetic Particle Examination (MT) .. 769
7.5.7 Liquid Penetrant Examination (PT) .. 769
7.5.8 Eddy Current Surface Examination Procedure Requirements (ET) 770
7.5.9 Evaluation and Retest for Partial Examination ... 772
7.6 Final Examination of Vessel .. 772
7.6.1 Surface Examination after Hydrotest ... 772
7.6.2 Inspection of Lined Vessel Interior after Hydrotest 772
7.7 Leak Testing .. 772
7.8 Acoustic Emission ... 772
7.9 Tables .. 773
7.10 Figures .. 784

Annex 7-A Responsibilities and Duties for Inspection and Examination Activities 802
7-A.1 General .. 802
7-A.2 Manufacturer’s Responsibility ... 802
7-A.3 Inspector’s Responsibility ... 802
7-A.4 Tables .. 804
Part 8 Pressure Testing Requirements

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>General Requirements</td>
<td>807</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Selection of Pressure Test Methods</td>
<td>807</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Precautions</td>
<td>807</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Requirements for Vessels of Specific Construction</td>
<td>808</td>
</tr>
<tr>
<td>8.1.4</td>
<td>Pressure Gages</td>
<td>809</td>
</tr>
<tr>
<td>8.1.5</td>
<td>Test Gaskets and Fasteners</td>
<td>809</td>
</tr>
<tr>
<td>8.2</td>
<td>Testing</td>
<td>809</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Test Pressure</td>
<td>809</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Preparation for Testing</td>
<td>810</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Test Fluid</td>
<td>810</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Test Procedures</td>
<td>810</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Test Inspection and Acceptance Criteria</td>
<td>810</td>
</tr>
<tr>
<td>8.3</td>
<td>Alternative Pressure Testing</td>
<td>811</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Hydrostatic–Pneumatic Tests</td>
<td>811</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Leak Tightness Testing</td>
<td>811</td>
</tr>
<tr>
<td>8.4</td>
<td>Documentation</td>
<td>811</td>
</tr>
<tr>
<td>8.5</td>
<td>Nomenclature</td>
<td>811</td>
</tr>
</tbody>
</table>

Part 9 Pressure Vessel Overpressure Protection

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>General Requirements</td>
<td>812</td>
</tr>
<tr>
<td>9.2</td>
<td>Responsibilities</td>
<td>812</td>
</tr>
<tr>
<td>9.3</td>
<td>Determination of Pressure-Relieving Requirements</td>
<td>812</td>
</tr>
<tr>
<td>9.4</td>
<td>Overpressure Limits</td>
<td>812</td>
</tr>
<tr>
<td>9.5</td>
<td>Permitted Pressure Relief Devices and Methods</td>
<td>814</td>
</tr>
<tr>
<td>9.6</td>
<td>Pressure Settings and Performance Requirements</td>
<td>815</td>
</tr>
<tr>
<td>9.7</td>
<td>Installation</td>
<td>815</td>
</tr>
</tbody>
</table>

Annex 9-A Best Practices for the Installation and Operation of Pressure Relief Devices

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-A.1</td>
<td>Introduction</td>
<td>817</td>
</tr>
<tr>
<td>9-A.2</td>
<td>Provisions for the Installation of Stop Valves in the Relief Path</td>
<td>817</td>
</tr>
<tr>
<td>9-A.3</td>
<td>Inlet Piping Pressure Drop for Pressure Relief Valves</td>
<td>817</td>
</tr>
<tr>
<td>9-A.4</td>
<td>Discharge Lines from Pressure Relief Devices</td>
<td>817</td>
</tr>
<tr>
<td>9-A.5</td>
<td>Cautions Regarding Pressure Relief Device Discharge into a Common Header</td>
<td>817</td>
</tr>
<tr>
<td>9-A.6</td>
<td>Pressure Differentials (Operating Margin) for Pressure Relief Valves</td>
<td>818</td>
</tr>
<tr>
<td>9-A.7</td>
<td>Pressure Relief Valve Orientation</td>
<td>819</td>
</tr>
<tr>
<td>9-A.8</td>
<td>Reaction Forces and Externally Applied Piping Loads</td>
<td>819</td>
</tr>
<tr>
<td>9-A.9</td>
<td>Sizing of Pressure Relief Devices for Fire Conditions</td>
<td>819</td>
</tr>
<tr>
<td>9-A.10</td>
<td>Use of Pressure-Indicating Devices to Monitor Pressure Differential</td>
<td>820</td>
</tr>
</tbody>
</table>

Annex 9-B Guide to the Relocation of Overpressure Protection Requirements

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
</table>

FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-F.1</td>
<td>Form of Stamping</td>
<td>49</td>
</tr>
<tr>
<td>3.1</td>
<td>Cr–Mo Heat Treatment Criteria</td>
<td>98</td>
</tr>
<tr>
<td>3.2</td>
<td>Typical Locations for Tensile Specimens</td>
<td>99</td>
</tr>
<tr>
<td>3.3</td>
<td>Charpy V-Notch Impact Test Requirements for Full-Size Specimens for Carbon and Low Alloy Steels as a Function of the Minimum Specified Yield Strength — Welded Parts Subject to PWHT</td>
<td>100</td>
</tr>
<tr>
<td>3.3M</td>
<td>Charpy V-Notch Impact Test Requirements for Full-Size Specimens for Carbon and Low Alloy Steels as a Function of the Minimum Specified Yield Strength — Welded Parts Not Subject to PWHT</td>
<td>101</td>
</tr>
<tr>
<td>3.4</td>
<td>Charpy V-Notch Impact Test Requirements for Full-Size Specimens for Carbon and Low Alloy Steels as a Function of the Minimum Specified Yield Strength — Welded Parts Subject to PWHT or Nonwelded Parts</td>
<td>102</td>
</tr>
<tr>
<td>3.4M</td>
<td>Charpy V-Notch Impact Test Requirements for Full-Size Specimens for Carbon and Low Alloy Steels as a Function of the Minimum Specified Yield Strength — Welded Parts Not Subject to PWHT or Nonwelded Parts</td>
<td>103</td>
</tr>
<tr>
<td>3.5</td>
<td>Illustration of Lateral Expansion in a Broken Charpy V-Notch Specimen</td>
<td>104</td>
</tr>
<tr>
<td>3.6</td>
<td>Lateral Expansion Requirements</td>
<td>105</td>
</tr>
</tbody>
</table>
3.17 Location of HAZ Specimen Removal ... 123
3.16 HAZ Impact Specimen Removal .. 122
3.15 Weld Metal Delta Ferrite Content ... 122
3.14 Orientation and Location of Transverse Charpy V-Notch Specimens 121
3.13M Reduction in the MDMT Without Impact Testing 122
3.13 Reduction in the MDMT Without Impact Testing — Parts Not Subject to PWHT 122
3.10 Typical Vessel Details Illustrating the Governing Thickness 115
3.9 Typical Vessel Details Illustrating the Governing Thickness 114
3.8M Impact Test Exemption Curves ... 105
3.8 Impact Test Exemption Curves — Welded Parts Not Subject to PWHT 105
3.6M Lateral Expansion Requirements ... 105
3.5Lateral Expansion Requirements — Welded Parts Subject to PWHT 105
3.4Lateral Expansion Requirements — Nonwelded Parts 102
3.3M Fatigue Curve for Carbon, Low Alloy, Series 4XX High Alloy, and High Tensile Strength Steels for Temperatures Not Exceeding 700°F — σ_{uts} ≤ 80 ksi ... 161
3.3 Fatigue Curve for Carbon, Low Alloy, Series 4XX High Alloy, and High Tensile Strength Steels for Temperatures Not Exceeding 700°F — σ_{uts} = 115 ksi to 130 ksi ... 162
3.3M Fatigue Curve for Carbon, Low Alloy, Series 4XX High Alloy, and High Tensile Strength Steels for Temperatures Not Exceeding 427°C ... 163
3.2Lateral Expansion Requirements — Welded Parts Not Subject to PWHT 105
3.2 Fatigue Curve for Carbon, Low Alloy, Series 4XX High Alloy, and High Tensile Strength Steels for Temperatures Not Exceeding 700°F — σ_{uts} = 93 ksi to 115 ksi ... 162
3.1 Fatigue Curve for Carbon, Low Alloy, Series 4XX High Alloy, and High Tensile Strength Steels for Temperatures Not Exceeding 427°C ... 163
3.1M Fatigue Curve for Carbon, Low Alloy, Series 4XX High Alloy, and High Tensile Strength Steels for Temperatures Not Exceeding 700°F — σ_{uts} ≤ 80 ksi ... 161
3.1 Fatigue Curve for Carbon, Low Alloy, Series 4XX High Alloy, and High Tensile Strength Steels for Temperatures Not Exceeding 700°F — σ_{uts} = 93 ksi to 115 ksi ... 162
3.1M Fatigue Curve for Carbon, Low Alloy, Series 4XX High Alloy, and High Tensile Strength Steels for Temperatures Not Exceeding 427°C ... 163
3.1 Fatigue Curve for Carbon, Low Alloy, Series 4XX High Alloy, and High Tensile Strength Steels for Temperatures Not Exceeding 700°F — σ_{uts} = 93 ksi to 115 ksi ... 162
3.1M Fatigue Curve for Carbon, Low Alloy, Series 4XX High Alloy, and High Tensile Strength Steels for Temperatures Not Exceeding 427°C ... 163
3.1 Fatigue Curve for Carbon, Low Alloy, Series 4XX High Alloy, and High Tensile Strength Steels for Temperatures Not Exceeding 700°F — σ_{uts} = 93 ksi to 115 ksi ... 162
3.1M Fatigue Curve for Carbon, Low Alloy, Series 4XX High Alloy, and High Tensile Strength Steels for Temperatures Not Exceeding 427°C ... 163
3.1 Fatigue Curve for Carbon, Low Alloy, Series 4XX High Alloy, and High Tensile Strength Steels for Temperatures Not Exceeding 700°F — σ_{uts} = 93 ksi to 115 ksi ... 162
3.1M Fatigue Curve for Carbon, Low Alloy, Series 4XX High Alloy, and High Tensile Strength Steels for Temperatures Not Exceeding 427°C ... 163
3.1 Fatigue Curve for Carbon, Low Alloy, Series 4XX High Alloy, and High Tensile Strength Steels for Temperatures Not Exceeding 700°F — σ_{uts} = 93 ksi to 115 ksi ... 162
3.1M Fatigue Curve for Carbon, Low Alloy, Series 4XX High Alloy, and High Tensile Strength Steels for Temperatures Not Exceeding 427°C ... 163
3.1 Fatigue Curve for Carbon, Low Alloy, Series 4XX High Alloy, and High Tensile Strength Steels for Temperatures Not Exceeding 700°F — σ_{uts} = 93 ksi to 115 ksi ... 162
3.10 Maximum Severity Levels for Castings With a Thickness of 50 mm to 305 mm (2 in. to 12 in.) 93
3.11 Charpy Impact Test Temperature Reduction Below the Minimum Design Metal Temperature 93
3.12 Charpy V-Notch Impact Test Requirements for Full-Size Specimens for Carbon and Low Alloy Steels as a Function of the Minimum Specified Yield Strength — Welded Parts Subject to PWHT (See Figures 3.3 and 3.3M) 94
3.13 Charpy V-Notch Impact Test Requirements for Full-Size Specimens for Carbon and Low Alloy Steels as a Function of the Minimum Specified Yield Strength — Welded Parts Not Subject to PWHT or Nonwelded Parts (See Figures 3.4 and 3.4M) 95
3.14 Impact Test Exemption Curves — Parts Not Subject to PWHT (See Figures 3.7 and 3.7M) 95
3.15 Impact Test Exemption Curves — Parts Subject to PWHT and Nonwelded Parts (See Figures 3.8 and 3.8M) 95
3.16 Reduction in the MDMT, T_{MDM}, Without Impact Testing — Parts Subject to PWHT (See Figures 3.12 and 3.12M) 96
3.17 Reduction in the MDMT, T_{MDM}, Without Impact Testing — Parts Subject to PWHT and Nonwelded Parts (See Figures 3.13 and 3.13M) 97
3.18 Required HAZ Impact Test Specimen Set Removal 97
3.19 Carbon Steel and Low Alloy Materials 125
3.20 Quenched and Tempered High Strength Steels 130
3.21 High Alloy Steel 131
3.22 Aluminum Alloys 137
3.23 Copper Alloys 138
3.24 Nickel and Nickel Alloys 139
3.25 Titanium and Titanium Alloys 141
3.26 Ferrous Bolting Materials for Design in Accordance With Part 4 142
3.27 Aluminum Alloy and Copper Alloy Bolting Materials for Design in Accordance With Part 4 144
3.28 Nickel and Nickel Alloy Bolting Materials for Design in Accordance With Part 4 144
3.29 Bolting Materials for Design in Accordance With Part 5 145
3.30 Strain Curve Data 151
3.31 Smooth Bar Fatigue Curve Stress Amplitude Correction Equations 159
3.32 Coefficients for the Welded Joint Fatigue Curves 160
3.33 Coefficients for the Welded Joint Fatigue Curves 160
4.1 Design Loads 176
4.2 Design Load Combinations 176
4.3 Load Factor, β, and Pressure Test Factors, β_T, γ_{min}, and γ_{str} / γ, for Class 1 and Class 2 Construction and Hydrostatic or Pneumatic Testing 177
4.4 Definition of Weld Categories 183
4.5 Definition of Weld Joint Types 184
4.6 Definition of Material Types for Welding and Fabrication Requirements 184
4.7 Some Acceptable Weld Joints for Shell Seams 184
4.8 Some Acceptable Weld Joints for Formed Heads 186
4.9 Some Acceptable Weld Joints for Unstayed Flat Heads, Tubesheets Without a Bolting Flange, and Side Plates of Rectangular Pressure Vessels 188
4.10 Some Acceptable Weld Joints With Butt Weld Hubs 189
4.11 Some Acceptable Weld Joints for Attachment of Tubesheets With a Bolting Flange 190
4.12 Some Acceptable Weld Joints for Flange Attachments 190
4.13 Some Acceptable Full Penetration Welded Nozzle Attachments Not Readily Radiographable 193
4.14 Some Acceptable Pad Welded Nozzle Attachments and Other Connections to Shells 195
4.15 Some Acceptable Fitting-Type Welded Nozzle Attachments and Other Connections to Shells 197
4.16 Some Acceptable Welded Nozzle Attachments That Are Readily Radiographable 198
4.17 Some Acceptable Partial Penetration Nozzle Attachments 200
4.18 Nozzle Necks Attached to Piping of Lesser Wall Thickness 201
4.19 Corner Welds for Flexible Shell Element Expansion Joints 201
4.20 Large End Junction 219
4.21 Small End Junction 220
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.3</td>
<td>Pressure Applied to Large End Junction</td>
<td>221</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Equivalent Line Load Applied to Large End Junction</td>
<td>222</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Pressure Applied to Small End Junction</td>
<td>223</td>
</tr>
<tr>
<td>4.3.6</td>
<td>Equivalent Line Load Applied to Small End Junction</td>
<td>224</td>
</tr>
<tr>
<td>4.3.7</td>
<td>Stress Calculations — Knuckle — Large End Cylinder</td>
<td>225</td>
</tr>
<tr>
<td>4.3.8</td>
<td>Stress Calculations — Flare — Small End Cylinder</td>
<td>227</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Maximum Metal Temperature for Compressive Stress Rules</td>
<td>251</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Algorithm for Computation of Predicted Inelastic Buckling Stress, (P_{ic})</td>
<td>251</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Minimum Number of Pipe Threads for Connections</td>
<td>279</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Nozzle Minimum Thickness Requirements</td>
<td>279</td>
</tr>
<tr>
<td>4.6.1</td>
<td>(C) Parameter for Flat Head Designs</td>
<td>296</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Junction Stress Equations for an Integral Flat Head With Opening</td>
<td>300</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Stress Acceptance Criteria for an Integral Flat Head With Opening</td>
<td>300</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Junction Stress Equations and Acceptance Criteria for a Type D Head</td>
<td>308</td>
</tr>
<tr>
<td>4.6.5</td>
<td>Stress Factor for Braced and Stayed Surfaces</td>
<td>313</td>
</tr>
<tr>
<td>4.6.6</td>
<td>Design of Closure Member of Jacket to Shell</td>
<td>323</td>
</tr>
<tr>
<td>4.6.7</td>
<td>Design of Jacket Penetration Details</td>
<td>329</td>
</tr>
<tr>
<td>4.6.8</td>
<td>Coefficients for Eq. ((4.11.5))</td>
<td>331</td>
</tr>
<tr>
<td>4.11.1</td>
<td>Design of Closure Member of Jacket to Shell</td>
<td>323</td>
</tr>
<tr>
<td>4.11.2</td>
<td>Design of Jacket Penetration Details</td>
<td>329</td>
</tr>
<tr>
<td>4.11.3</td>
<td>Coefficients for Eq. ((4.11.5))</td>
<td>331</td>
</tr>
<tr>
<td>4.12.1</td>
<td>Noncircular Vessel Configurations and Types</td>
<td>345</td>
</tr>
<tr>
<td>4.12.2</td>
<td>Stress Calculations and Acceptance Criteria for Type 1 Noncircular Vessels (Rectangular Cross Section)</td>
<td>346</td>
</tr>
<tr>
<td>4.12.3</td>
<td>Stress Calculations and Acceptance Criteria for Type 2 Noncircular Vessels (Rectangular Cross Section With Unequal Side Plate Thicknesses)</td>
<td>347</td>
</tr>
<tr>
<td>4.12.4</td>
<td>Stress Calculations and Acceptance Criteria for Type 3 Noncircular Vessels (Chamfered Rectangular Cross Section)</td>
<td>349</td>
</tr>
<tr>
<td>4.12.5</td>
<td>Stress Calculations and Acceptance Criteria for Type 4 Noncircular Vessels (Reinforced Rectangular Cross Section)</td>
<td>350</td>
</tr>
<tr>
<td>4.12.6</td>
<td>Stress Calculations and Acceptance Criteria for Type 5 Noncircular Vessels (Reinforced Rectangular Cross Section With Chamfered Corners)</td>
<td>352</td>
</tr>
<tr>
<td>4.12.7</td>
<td>Stress Calculations and Acceptance Criteria for Type 6 Noncircular Vessels (Reinforced Octagonal Cross Section With Chamfered Corners)</td>
<td>354</td>
</tr>
<tr>
<td>4.12.8</td>
<td>Stress Calculations and Acceptance Criteria for Type 7 Noncircular Vessels (Rectangular Cross Section With Single-Stay Plate or Multiple Bars)</td>
<td>359</td>
</tr>
<tr>
<td>4.12.9</td>
<td>Stress Calculations and Acceptance Criteria for Type 8 Noncircular Vessels (Rectangular Cross Section With Double-Stay Plate or Multiple Bars)</td>
<td>360</td>
</tr>
<tr>
<td>4.12.10</td>
<td>Stress Calculations and Acceptance Criteria for Type 9 Noncircular Vessels (Oround Cross Section)</td>
<td>361</td>
</tr>
<tr>
<td>4.12.11</td>
<td>Stress Calculations and Acceptance Criteria for Type 10 Noncircular Vessels (Reinforced Oround Cross Section)</td>
<td>362</td>
</tr>
<tr>
<td>4.12.12</td>
<td>Stress Calculations and Acceptance Criteria for Type 11 Noncircular Vessels (Oround Cross Section With Single-Stay Plate or Multiple Bars)</td>
<td>364</td>
</tr>
<tr>
<td>4.12.13</td>
<td>Stress Calculations and Acceptance Criteria for Type 12 Noncircular Vessels (Circular Cross Section With Single-Stay Plate)</td>
<td>365</td>
</tr>
<tr>
<td>4.12.14</td>
<td>Effective Width Coefficient</td>
<td>366</td>
</tr>
<tr>
<td>4.12.15</td>
<td>Compressive Stress Calculations</td>
<td>367</td>
</tr>
<tr>
<td>4.13.1</td>
<td>Stress Coefficients for Horizontal Vessels on Saddle Supports</td>
<td>410</td>
</tr>
<tr>
<td>4.14.1</td>
<td>Gasket Factors for Determining the Bolt Loads</td>
<td>425</td>
</tr>
<tr>
<td>4.14.2</td>
<td>Recommended Minimum Gasket Contact Width</td>
<td>427</td>
</tr>
<tr>
<td>4.14.3</td>
<td>Effective Gasket Width for Determining the Bolt Loads</td>
<td>427</td>
</tr>
<tr>
<td>4.14.4</td>
<td>Flange Stress Factors Equations Involving Diameter</td>
<td>429</td>
</tr>
<tr>
<td>4.14.5</td>
<td>Flange Stress Factor Equations</td>
<td>431</td>
</tr>
<tr>
<td>4.14.6</td>
<td>Moment Arms for Flange Loads for the Operating Condition</td>
<td>433</td>
</tr>
<tr>
<td>4.14.7</td>
<td>Flange Moments of Inertia</td>
<td>433</td>
</tr>
<tr>
<td>4.14.8</td>
<td>Flange Stress Equations</td>
<td>434</td>
</tr>
<tr>
<td>4.14.9</td>
<td>Flange Stress Acceptance Criteria</td>
<td>434</td>
</tr>
<tr>
<td>4.14.10</td>
<td>Flange Rigidity Criterion</td>
<td>435</td>
</tr>
</tbody>
</table>
Effective Elastic Modulus, Poisson’s Ratio, and Shear Modulus for a Perforated Plate With a Square Hole Pattern — Diagonal Direction ... 667

Orthotropic Effective Elasticity Matrix for a Perforated Plate With an Equilateral Triangular Hole Pattern ... 668

Orthotropic Effective Elasticity Matrix for a Perforated Plate With a Square Hole Pattern ... 669

Equations for Determining Stress Components Based on the Results From an Equivalent Plate Analysis for an Equilateral Rectangular Hole Pattern ... 670

Stress Factor K_x Coefficients — Triangular Hole Pattern ... 671

Stress Factor K_y Coefficients — Triangular Hole Pattern .. 672

Stress Factor K_{xy} Coefficients — Triangular Hole Pattern .. 673

Stress Factor K_{xx} Coefficients — Triangular Hole Pattern .. 676

Stress Factor K_{yz} Coefficients — Triangular Hole Pattern .. 677

Stress Factors K_x and K_y Coefficients — Rectangular Hole Pattern ... 679

Stress Factor K_y — Square Hole Pattern ... 680

Stress Factors K_{xz} and K_{yx} — Square Hole Pattern .. 681

Boundary Conditions for the Numerical Analysis (See Figure 5-E.3) ... 682

Equations for Calculating Forming Strains ... 725

Post-Cold-Forming Strain Limits and Heat-Treatment Requirements for P-No. 15E Materials ... 725

Post-Fabrication Strain Limits and Required Heat Treatment for High Alloy Materials 726

Post-Fabrication Strain Limits and Required Heat Treatment for Nonferrous Materials 727

Maximum Allowable Offset in Welded Joints ... 727

Welding Process Application Limitations ... 728

Maximum Reinforcement for Welded Joints ... 728

Minimum Preheat Temperatures for Welding ... 729

Requirements for Postweld Heat Treatment (PWHT) of Pressure Parts and Attachments for Materials: P-No. 1, Group 1, 2, 3 ... 730

Requirements for Postweld Heat Treatment (PWHT) of Pressure Parts and Attachments for Materials: P-No. 3, Group 1, 2, 3 ... 731

Requirements for Postweld Heat Treatment (PWHT) of Pressure Parts and Attachments for Materials: P-No. 5, Group 1, 2 .. 732

Requirements for Postweld Heat Treatment (PWHT) of Pressure Parts and Attachments for Materials: P-No. 5A; P-No. 5B, Group 1; and P-No. 5C, Group 1 .. 733

Requirements for Postweld Heat Treatment (PWHT) of Pressure Parts and Attachments for Materials: P-No. 15E, Group 1 ... 734

Requirements for Postweld Heat Treatment (PWHT) of Pressure Parts and Attachments for Materials: P-No. 6, Group 1, 2, 3 .. 735

Requirements for Postweld Heat Treatment (PWHT) of Pressure Parts and Attachments for Materials: P-No. 7, Group 1, 2; and P-No. 8 ... 736

Requirements for Postweld Heat Treatment (PWHT) of Pressure Parts and Attachments for Materials: P-No. 9A, Group 1, and P-No. 9B, Group 1 .. 737

Requirements for Postweld Heat Treatment (PWHT) of Pressure Parts and Attachments for Materials: P-No. 10A, Group 1; P-No. 10C; Group 1; P-No. 10H, Group 1; P-No. 10I, Group 1; P-No. 10K, Group 1; and P-No. 45 ... 739

Alternative Postweld Heat Treatment Requirements .. 742

Postweld Heat Treatment Requirements for Quenched and Tempered Materials in Table 3-A2 742

Quench and Tempered Steels Conditionally Exempt From Production Impact Tests 743

High Nickel Alloy Filler for Quenched and Tempered Steels .. 744

Mandrel Radius for Guided Bend Tests for Forged Fabrication ... 744

U-Shaped Unreinforced and Reinforced Bellows Manufacturing Tolerances .. 745

Technical Data Sheet for PMI ... 758

Examination Groups for Pressure Vessels ... 773

Nondestructive Examination ... 774

Selection of Nondestructive Testing Method for Full Penetration Joints ... 778

Nondestructive Examination of Layered Vessels ... 778

NDE Techniques, Method, Characterization, Acceptance Criteria ... 779

Visual Examination Acceptance Criteria ... 779
7.7 Radiographic Acceptance Standards for Rounded Indications (Examples Only) 781
7.8 Flaw Acceptance Criteria for Welds With Thicknesses Between 6 mm (1/4 in.) and Less Than
 13 mm (1/2 in.) ... 781
7.9 Flaw Acceptance Criteria for Welds With Thicknesses Between 13 mm (1/2 in.) and Less Than
 25 mm (1 in.) ... 782
7.10 Flaw Acceptance Criteria for Welds With Thicknesses Between 25 mm (1 in.) and Less Than or
 Equal to 300 mm (12 in.) .. 782
7.11 Flaw Acceptance Criteria for Welds With Thicknesses Equal to or Greater Than 400 mm (16 in.) 783
7-A.1 Inspection and Examination Activities and Responsibilities/Duties 804

FORMS
A-1 Manufacturer’s Data Report for Pressure Vessels .. 31
A-1P Manufacturer’s Data Report for Plate Heat Exchangers ... 34
A-2 Manufacturer’s Partial Data Report ... 36
A-3 Manufacturer’s Data Report Supplementary Sheet ... 39
A-3L Manufacturer’s Data Report Supplementary Sheet Shell-and-Tube Heat Exchangers 40
A-4 Manufacturer’s Data Report Supplementary Sheet Shell-and-Tube Heat Exchangers 41
4.19.1 Metric Form Specification Sheet for ASME Section VIII, Division 2 Bellows Expansion
 Joints, Metric Units .. 546
4.19.2 U.S. Customary Form Specification Sheet for ASME Section VIII, Division 2 Bellows
 Expansion Joints, U.S. Customary Units .. 547
TEXP-1 Tube Expanding Procedure Specification (TEPS) ... 574
TEXP-2 Suggested Format for Tube-to-Tubesheet Expanding Procedure Qualification Record for Test
 Qualification (TEPQR) ... 578
LIST OF SECTIONS

I Rules for Construction of Power Boilers

II Materials
 • Part A — Ferrous Material Specifications
 • Part B — Nonferrous Material Specifications
 • Part C — Specifications for Welding Rods, Electrodes, and Filler Metals
 • Part D — Properties (Customary)
 • Part D — Properties (Metric)

III Rules for Construction of Nuclear Facility Components
 • Subsection NCA — General Requirements for Division 1 and Division 2
 • Appendices
 • Division 1
 – Subsection NB — Class 1 Components
 – Subsection NCD — Class 2 and Class 3 Components
 – Subsection NE — Class MC Components
 – Subsection NF — Supports
 – Subsection NG — Core Support Structures
 • Division 2 — Code for Concrete Containments
 • Division 3 — Containment Systems for Transportation and Storage of Spent Nuclear Fuel and High-Level Radioactive Material
 • Division 4 — Fusion Energy Devices
 • Division 5 — High Temperature Reactors

IV Rules for Construction of Heating Boilers

V Nondestructive Examination

VI Recommended Rules for the Care and Operation of Heating Boilers

VII Recommended Guidelines for the Care of Power Boilers

VIII Rules for Construction of Pressure Vessels
 • Division 1
 • Division 2 — Alternative Rules
 • Division 3 — Alternative Rules for Construction of High Pressure Vessels

IX Welding, Brazing, and Fusing Qualifications

X Fiber-Reinforced Plastic Pressure Vessels

XI Rules for Inservice Inspection of Nuclear Reactor Facility Components
 • Division 1 — Rules for Inspection and Testing of Components of Light-Water-Cooled Plants
 • Division 2 — Requirements for Reliability and Integrity Management (RIM) Programs for Nuclear Reactor Facilities

XII Rules for Construction and Continued Service of Transport Tanks

XIII Rules for Overpressure Protection
FOREWORD*

In 1911, The American Society of Mechanical Engineers established the Boiler and Pressure Vessel Committee to formulate standard rules for the construction of steam boilers and other pressure vessels. In 2009, the Boiler and Pressure Vessel Committee was superseded by the following committees:

(a) Committee on Power Boilers (I)
(b) Committee on Materials (II)
(c) Committee on Construction of Nuclear Facility Components (III)
(d) Committee on Heating Boilers (IV)
(e) Committee on Nondestructive Examination (V)
(f) Committee on Pressure Vessels (VIII)
(g) Committee on Welding, Brazing, and Fusing (IX)
(h) Committee on Fiber-Reinforced Plastic Pressure Vessels (X)
(i) Committee on Nuclear Inservice Inspection (XI)
(j) Committee on Transport Tanks (XII)
(k) Committee on Overpressure Protection (XIII)
(l) Technical Oversight Management Committee (TOMC)

Where reference is made to “the Committee” in this Foreword, each of these committees is included individually and collectively.

The Committee’s function is to establish rules of safety relating only to pressure integrity, which govern the construction** of boilers, pressure vessels, transport tanks, and nuclear components, and the inservice inspection of nuclear components and transport tanks. The Committee also interprets these rules when questions arise regarding their intent. The technical consistency of the Sections of the Code and coordination of standards development activities of the Committees is supported and guided by the Technical Oversight Management Committee. This Code does not address other safety issues relating to the construction of boilers, pressure vessels, transport tanks, or nuclear components, or the inservice inspection of nuclear components or transport tanks. Users of the Code should refer to the pertinent codes, standards, laws, regulations, or other relevant documents for safety issues other than those relating to pressure integrity. Except for Sections XI and XII, and with a few other exceptions, the rules do not, of practical necessity, reflect the likelihood and consequences of deterioration in service related to specific service fluids or external operating environments. In formulating the rules, the Committee considers the needs of users, manufacturers, and inspectors of pressure vessels. The objective of the rules is to afford reasonably certain protection of life and property, and to provide a margin for deterioration in service to give a reasonably long, safe period of usefulness. Advancements in design and materials and evidence of experience have been recognized.

This Code contains mandatory requirements, specific prohibitions, and nonmandatory guidance for construction activities and inservice inspection and testing activities. The Code does not address all aspects of these activities and those aspects that are not specifically addressed should not be considered prohibited. The Code is not a handbook and cannot replace education, experience, and the use of engineering judgment. The phrase engineering judgment refers to technical judgments made by knowledgeable engineers experienced in the application of the Code. Engineering judgments must be consistent with Code philosophy, and such judgments must never be used to overrule mandatory requirements or specific prohibitions of the Code.

The Committee recognizes that tools and techniques used for design and analysis change as technology progresses and expects engineers to use good judgment in the application of these tools. The designer is responsible for complying with Code rules and demonstrating compliance with Code equations when such equations are mandatory. The Code neither requires nor prohibits the use of computers for the design or analysis of components constructed to the

* The information contained in this Foreword is not part of this American National Standard (ANS) and has not been processed in accordance with ANSI’s requirements for an ANS. Therefore, this Foreword may contain material that has not been subjected to public review or a consensus process. In addition, it does not contain requirements necessary for conformance to the Code.
** Construction, as used in this Foreword, is an all-inclusive term comprising materials, design, fabrication, examination, inspection, testing, certification, and overpressure protection.